Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(59): 8234-8237, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35788580

RESUMO

Au(I)-thiolate complexes are a new class of aggregation-induced emission (AIE) material. Here we demonstrate a new aggregation strategy of water-soluble Au(I)-thiolate complexes induced by cationic polymers at optimized pH values. The generated AIE shows longer wavelengths than the emission induced by other methods.


Assuntos
Ouro , Polímeros , Cátions , Ouro/química , Polímeros/química , Água
2.
Anal Chem ; 93(10): 4657-4665, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33651605

RESUMO

Rapid component separation and reliable surface-enhanced Raman scattering (SERS) detection of organochlorine pesticide (OCP) residues in real water samples remain major challenges because of sample complexity, trace content, and low molecular affinity for a metal surface. Here, we report a novel strategy of simultaneous in situ extraction and fabrication of plasmonic colloidal gold superparticles (AuSPs) to perform rapid SERS detection of OCPs in environmental water. In this protocol, multiple components of OCPs in complex water were facilely diffused into dichloromethane (DCM) microdroplets and specifically bound to octadecylamine-modified gold nanoparticles (Au-ODAs), affording the SERS substrate through self-assembly of the OCP-trapped Au-ODA into AuSPs with the evaporation of DCM. SERS signals of the specifically prepared Au-ODA could be used as an internal standard to calibrate the absolute signal of OCPs, and multiplex detection could be achieved depending on their molecularly narrow Raman peaks. As for simultaneously sensing four kinds of OCPs (4,4'-DDT, α-endosulfan, tetradifon, and chlordane) in water, the established method showed strong anti-interference ability and comparable quantification ranges with a low limit of detection (LOD). The recoveries ranged from 90.20 to 109.4% for OCPs in farmland, river, and fishpond water, indicating that the established AuSP-based platform is reliable and applicable to the detection of OCPs in real water samples.


Assuntos
Nanopartículas Metálicas , Praguicidas , Ouro , Coloide de Ouro , Praguicidas/análise , Análise Espectral Raman , Água
3.
Anal Chem ; 92(5): 4115-4122, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32003219

RESUMO

Noble metal nanoparticles (NPs) have enabled surface-enhanced Raman scattering (SERS) for in situ monitoring of NPs-catalyzed reactions. However, it still remains a great challenge to ensure that analytes without plasmonic metal surface-affinity groups (such as thiol and amino groups) can be located into hotspots and detected by SERS. Here, we report a novel sacrificial template method for the fabrication of "pomegranate-like" plasmonic nanoreactors (PPNs), in which high-density embedded AuNPs simultaneously generated SERS enhancement and catalytic performance. Once the analytes entering PPNs are catalyzed and meanwhile located into the hotspots, in situ SERS monitoring of catalytic reactions can be achieved. The intense hotspots of localized electric fields of PPNs were evaluated by finite-difference time-domain simulation. By using PPNs as a substrate, SERS signals of molecules without Au surface-affinity groups were obtained, such as p-naphthoquinone and 4-nitrophenol. The PPNs showed high catalytic activities in the reduction of 4-nitrothiophenol to 4-aminothiophenol and 4-nitrophenol to 4-aminophenol, respectively. Besides, the SERS spectra of both 4-nitrophenol and 4-aminophenol during the reduction reaction of 4-nitrophenol with NaBH4 were first obtained, demonstrating their utilization in the detection of catalytic reactions.

4.
Talanta ; 197: 225-233, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771928

RESUMO

Surface enhanced Raman scattering (SERS) substrates that can be attached to rough, irregular surfaces and directly collect samples is especially useful for the detection of surface organic residues. Herein, novel AuNPs-pseudo-paper films (APPFs) with uniform structure, flexible properties and wicking capabilities were first fabricated and used as SERS substrate for the sensitive detection of surface pesticides residues. Gold nanoparticles (AuNPs) were in situ synthesized on pseudo-paper films (PPFs) by iterative seeding method to create lots of "hot-spots", accordingly exhibiting high SERS activity (SERS enhancement factor of 3.02 × 106). By virtue of polyethylenimine (PEI) grafted onto the dissolved microcrystalline cellulose (MCC), AuCl4- and AuNPs can firmly be bonded to the surfaces of PPFs. The prepared APPFs show high reproducibility (relative standard deviation of 6.13%), which is attributed to the uniform surface of the films. The fabricated APPFs SERS substrate allows rapid detection of surface pesticides residues by a facile "swabbing-measure" detection mode avoiding tedious and time-consuming sampling and separation processes. Based on their inherent SERS spectra, thiram, parathion methyl, and malachite green (MG) can be simultaneously detected on apple peel, which demonstrates the potential applicability of this developed protocol for surface organic residues analysis in agriculture and food security.

5.
Anal Chem ; 90(22): 13647-13654, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30379069

RESUMO

We report a novel strategy of simultaneous in situ extraction and fabrication of surface-enhanced Raman scattering substrate (IE-SERS) to perform selective and reliable on-site determination of thiram residue in soil, fruits, and vegetables. In this protocol, the thiram residue on complex surfaces can facilely diffuse into the solvent (dichloromethane (DCM)) and specifically bind to gold nanoparticles (AuNPs), affording the SERS substrate through the embedding of the thiram-trapped AuNPs into the cellulose p-toluenesulfonates (CTSAs) film through the evaporation of DCM. SERS signals of the specifically prepared CTSAs could be used as an internal standard to calibrate the absolute signal of thiram, which can avoid the fluctuation of SERS intensities caused by uneven and irregular morphology of SERS substrate. Thus, reliable quantitation of thiram through SERS detection and superior reproducibility in the SERS measurement (RSD = 4.21%) were achieved. As for directly sensing the thiram residue in soil, the established method shows strong anti-interference ability and a good linear response from 0.1 to 12 µg/g with a low limit of detection (LOD) of 50 ng/g, which is lower than that of all the previously reported methods. The recoveries range from 91.76 to 112.3% for thiram in paddy soils, indicating that the established IE-SERS method is reliable and applicable to the detection of thiram residue in real soil samples. In addition, the measurement of the residual thiram on strawberry and cucumber surface was also successfully accomplished by this strategy, indicating that the established method also has great potential in the in situ ultrasensitive detection of thiram on irregular fruits and vegetables.


Assuntos
Frutas/química , Fungicidas Industriais/análise , Poluentes do Solo/análise , Análise Espectral Raman/métodos , Tiram/análise , Verduras/química , Benzenossulfonatos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ouro/química , Limite de Detecção , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...